
November 1998 The Delphi Magazine 13

Slimming The Fat Off Your Apps
by Hallvard Vassbotn

Afew weeks ago I came across
some unexpected initialis-

ation code in one of my units while
debugging. I was puzzled to find
that the compiler had generated
some code in the initialization
section of the unit, even though I
hadn’t declared one. At the time I
was busy tracking down a logical
error in my code, so I didn’t pursue
the issue any further.

Later, I came across a discussion
on how you could reduce the
memory footprint of the Delphi IDE
on Windows NT by simply minimis-
ing and restoring it. This applied to
both Delphi 3 and 4. I tried it and it
worked, but nobody could explain
why. It turns out that, under NT,
the operating system will page out
the executable when you minimise
an application. This is a very useful
memory optimisation that is unfor-
tunately not implemented in Win95
or Win98. But this still did not
explain why the memory used in
the Delphi IDE was so drastically
reduced even after restoring it.

Examining The Patient
I suddenly remembered my rather
puzzling debugging session and
started to investigate, to see if the
two issues were related. First I cre-
ated a simple unit with initializa-
tion and finalization sections:

Unit TestInit;
interface
var UnitGlobal: longint;
implementation
initialization
UnitGlobal := 0;

finalization
UnitGlobal := 0;

end.

Then I set breakpoints on the two
UnitGlobal assignment statements
and ran the application. When the
debugger stopped at the break-
points, I opened up the CPU
Window. To enable this window in
Delphi 3, you need to set the follow-
ing Registry key:

\HKCU\Software\Borland\Delphi\
3.0\Debugging\EnableCPU="1"

By looking at the generated assem-
bly code I could deduce what extra
code the compiler had inserted.

This exercise was repeated with
different versions of the TestInit
unit to see how it would affect the
generated code. I tested and
debugged the code in Delphi 2, 3
and 4. The following is a report of
what I found. For more details
about the generated assembly
code, look at the Turbo Debugger
log files on this month’s disk.

It turns out that Delphi 3 and 4
behave exactly the same, whilst
Delphi 2 works a little differently.
Lets look at how Delphi 2 compiles
the init.../final... code first.

Delphi 2 Diagnosis
In Delphi 2, units get code in the
initialization section if, and only
if, it is explicitly declared by the
programmer. The initialization
sections are called directly from
the startup code of the executable,
so the code in the project file
InitTest.Dpr:

begin
Application.Initialize;
Application.Run;

end.

is compiled into (pseudo-code):

begin
System._InitExe;
System.initialzation;
SysUtils.initialzation;
Classes.initialzation;
Printers.initialzation;
Menus.initialzation;
Controls.initialzation;
Forms.initialzation;
TestInit.initialzation;
Application.Initialize;
Application.Run;

end.

If the unit does not contain a final-
ization section, no code is added

by the compiler, otherwise a call to
AddExitProc is inserted as the first
statement in the initialization
section, for instance the initial-
ization section in InitTest.Pas:

initialization
UnitGlobal := 0;

is compiled into (pseudo-code):

initialization
System.AddExitProc(
@InitTest.finalization);

UnitGlobal := 0;

If the unit declares one or more
global long string variables, the
compiler adds a try..finally con-
struct with an empty finally block. I
don’t know why this is done, as it
seems totally redundant. If we add
a global string variable to InitTest,
our code now looks like this:

var LongstringRef: AnsiString;
initialization
UnitGlobal := 0;

but the compiler generates the
equivalent to:

initialization
try
System.AddExitProc(
@InitTest.finalization);

UnitGlobal := 0;
finally
end;

Under no circumstances does the
compiler add any code to the
finalization section of the unit. In
fact, this means that all units
which declare global long string
variables will potentially cause a
memory leak.

This is not as bad as it sounds,
because it will not be a leak that
accumulates over time and the
operating system will make sure to
reclaim the memory allocated by
the application when it is closed
down. But this is a point to be
aware of, as some memory leak

14 The Delphi Magazine Issue 39

detecting debugging tools might
signal these leaks.

To avoid the leaks it would have
been better for the compiler to
automatically insert code into the
finalization section of each unit
that declares global long string
variables. We will see later that this
is handled better by Delphi 3 and 4.
If you are still using Delphi 2 and
want to get rid of these memory
leaks, you can simply add the code
to the finalization section manu-
ally. In our case, we would add:

finalization
UnitGlobal := 0;
LongStringRef := ‘’;

to ensure that the reference count
of the long string is decremented
when the application closes down
and get rid of the memory leak.

The conclusion is that Delphi 2 is
pretty well-behaved in generating
code for unit initialization and
finalization sections. It misses
out on cleaning up global long
string variables, but at least it
doesn’t add any dummy code
behind our backs when there are
no explicit initialization or
finalization sections in the unit.

Delphi 3 And 4 Diagnosis
With Delphi 3 and 4 things are a
little different. The initialization
sections are no longer called
directly from the startup code of
the executable. Instead, the linker
builds a structure with pointers to
all the initialization and
finalization sections that should
be called during startup and shut-
down. Look at the InitUnits and
FInitUnits procedures in the
System unit for details.

The startup code in the project
file InitTest.Dpr is compiled into:

begin
System._InitExe;
Application.Initialize;
Application.Run;

end.

System._InitExe calls System.
InitUnits which loops through the
structure generated by the linker,
calling each initialization
section.

It seems like Inprise was deter-
mined to get away from the long
string memory leaks experienced
with Delphi 2. At the same time the
new Variant and Interface types
were introduced. Just as with long
strings, global variables of these
types are reference counted and
need to be cleaned up at shutdown.
Delphi 4 also added dynamic
arrays into the pot.

Another new feature added with
Delphi 3 was package support.
With this, Inprise needed a mecha-
nism to ensure that finalization
sections were only run if the corre-
sponding initialization section
had been executed. To implement
this, the compiler automatically
adds a global longint variable to all
units. This variable is used as a flag
to indicate if the initialization
code has run or not. This variable
is decremented in the initializa-
tion section and incremented in
the finalization section.

Finally, for some reason, the
compiler now always adds both
initialization and finalization
sections to all units, even if none
are explicitly declared by the pro-
grammer. With this in mind, there
are three possible variations of
automatically generated code in
Delphi 3 and 4.

If the unit does not declare any
global reference counted variables
(long strings, variants, interfaces
or dynamic arrays), for instance
for a completely empty unit

Unit TestInit;
interface
implementation
end.

the compiler still generates the
equivalent to this code:

Unit TestInit;
interface
implementation
var
AutoGlobal: longint;

initialization
Dec(AutoGlobal);

finalization
try
Inc(AutoGlobal);

finally
end;

As you can see all this is redun-
dant: 54 bytes of code and 4 bytes
of global data for every unit in the
application and any runtime pack-
ages it might be using. This is not
so bad, but knowing that this code
is run at application’s startup, a lot
of 4Kb blocks of code are paged in
and left in physical memory.

We will see later how we can
solve this problem. The best solu-
tion would be for Inprise to fix the
compiler so that it does not gener-
ate this unnecessary code for units
with no explicit initialization or
finalization sections and no refer-
ence counted global variables.
This behaviour is also the main
reason why the IDE takes up so
much memory and why this can be
drastically reduced by minimising
and restoring (at least on NT).

Let’s continue with looking at
the code which the compiler gener-
ates for other situations. If the unit
has explicit initialization and
finalization sections with user
code in them, the compiler adds
checks to see if the AutoGlobal vari-
able is valid. So for our test unit:

Unit TestInit;
var UnitGlobal: longint;
interface
implementation
initialization
UnitGlobal := 0;

finalization
UnitGlobal := 0;

End.

the compiler adds this code:

Unit TestInit;
interface
var UnitGlobal: longint;
implementation
var AutoGlobal: longint;
initialization
Dec(AutoGlobal);
if AutoGlobal >= 0 then Exit;
UnitGlobal := 0;

finalization
try
Inc(AutoGlobal);
if AutoGlobal <> 0 then
Exit;

UnitGlobal := 0;
finally
end;

end.

16 The Delphi Magazine Issue 39

Except for the dummy try..
finally block, this is fine.

Finally we have the situation
where there are one or more global
reference counted variables in the
unit, for instance Listing 1 is com-
piled into Listing 2. This code is
also fine. Now the previously use-
less try..finally block in the
finalization section is used to
clean up the global variables. This
is very good: we get rid of those
nasty memory leaks (and with vari-
ants and interfaces potentially
close down external OLE servers).
Note, however, that the compiler
has introduced yet another useless
try..finally block, this time in the
initialization section of the unit.
Oh, well...

The conclusion is that Delphi 3
and 4 have fixed the potential
memory leaks that Delphi 2
missed. However, they have also
introduced the rather irritating

Unit TestInit;
interface
var
UnitGlobal: longint;
LongstringRef: AnsiString;
InterfaceRef : IUnknown;
VariantRef : Variant;
{$IFDEF VER120}
ArrayRef: array of integer;
{$ENDIF}

implementation
var AutoGlobal: longint;
initialization
try
Dec(AutoGlobal);
if AutoGlobal >= 0 then Exit;
UnitGlobal := 0;

finally
end;

finalization
try
Inc(AutoGlobal);
if AutoGlobal <> 0 then Exit;
UnitGlobal := 0;

finally
LongstringRef: = '';
InterfaceRef := nil;
VariantRef := Unassigned;
{$IFDEF VER120}
ArrayRef := nil;
{$ENDIF}

end;

➤ Listing 2

and memory consuming practice
of adding initialization and
finalization code to every unit in
the EXE file and all DPL files. Let’s
see how we can get around this.

Sweetening The Pill
The best cure for the memory
problems we’ve seen in Delphi 3
and 4 would of course be to fix the
compiler. But what else can we do?

A method of working round the
problem has been developed by
Roy Nelson (rnelson@inprise.com)
of Inprise European Professional
Services. This code was originally
created to get around the extra
memory usage of Delphi applica-
tions. Roy’s code makes the
application’s footprint smaller, as

Unit TestInit;
interface
var
UnitGlobal: longint;
LongstringRef: AnsiString;
InterfaceRef : IUnknown;
VariantRef : Variant;
{$IFDEF VER120}
ArrayRef: array of integer;
{$ENDIF}
implementation
initialization
UnitGlobal := 0;

finalization
UnitGlobal := 0;

end.

➤ Listing 1

it forces the operating system to
only keep the required code in
memory. If this code is called from
a unit’s initialization section in a
package added to the IDE, the IDE’s
memory footprint also reduces.
Roy’s routine is shown in Listing 3.

This little gem calls the Windows
NT API SetProcessWorkingSetSize
(check Delphi’s online help for the
definition of the routine) to page
out all the code for the currently
running process. If both
dwMinimumWorkingSetSize and
dwMaximumWorkingSetSize have the
value 0xffffffff, the function tem-
porarily trims the working set of
the specified process to zero. This
essentially swaps the process out
of physical memory.

Proof Of The Pudding
In the article, we see how the compiler generates different versions of the ini-
tialization and finalization code. I said the compiler adds code to units with
no explicit init/final sections in them, but I didn’t explain how I came to this
conclusion. It is true that I stumbled upon one of these magic init sections
when debugging one day, but how can we prove that this is the general case
for all units? And how do I know that the memory reference that gets incre-
mented and decremented refers to a global variable declared locally in that
unit and not some other global structure?

For the more adventurous of you, you can try the following steps. Include
this unit in a project:

Unit TestInit2;
interface
var
AutoGlobalP : pointer;
UnitGlobal: longint;

implementation
//var AutoGlobal: longint;
initialization
//Dec(AutoGlobal);
//if AutoGlobal >= 0 then Exit;
AutoGlobalP := pointer(longint(@UnitGlobal) + 4);
UnitGlobal := 0;

finalization
//try
// Inc(AutoGlobal);
// if AutoGlobal <> 0 then Exit;

AutoGlobalP := pointer(longint(@UnitGlobal) + 4);
UnitGlobal := 0;

//finally
//end;
end.

Notice that I have included commented out code that corresponds to the
assembly added by the compiler.

Now set breakpoints on the two UnitGlobal assignments, then run. When
you hit the breakpoints, bring up the CPU View. Notice the address of the
compiler generated global variable from the assembly code. Now evaluate
the value of the AutoGlobalP variable. The address and the value should
match. This proves that Delphi adds a global variable just after the last
declared global variable.

Next (assuming you have TASM32) copy the RTL to a new folder and MAKE
it with full debug info. Add the debug LIB path to a test project with some
units without any explicit initialization or finalization sections. Compile the
project. Open System.Pas and go to the procedure InitUnits. Set a break-
point on the try statement. Now run the project. When you hit the break-
point, evaluate the Table variable (de-reference it). See the list of init...
and final... code that will run. Notice that all units are included even if they
have no explicit init/final sections.

November 1998 The Delphi Magazine 17

Unfortunately this API is only
implemented on NT platforms, but
it is stubbed out in Win95 and
should do no harm. It seems that
when NT minimises an application,
it calls this function, paging out all
the inactive memory pages.

As an experiment I added a call
to TrimWorkingSet to a sample pro-
ject. Testing (on NT 4.0 sp3)
showed that the initial memory
footprint (Mem Usage) reported by
the NT Task Manager dropped
from 8,728Kb to 7,528Kb, a reduc-
tion of about 14%! This project has
about 260 units, so your mileage
may vary. I saw no performance
degradation after adding this call.

It would also be very useful to
automatically trim the memory
usage of the Delphi IDE without
having to minimise and restore it
each time. As Roy pointed out, this
can be easily done by adding a
design-time package that calls
TrimWorkingSet. On the disk you
will find both a TrimMem unit to
include with your own applications
and a TrimMemP package to install
into Delphi (there is also a TrimMem4
package compatible with Delphi 4).

You should try to ensure that the
TrimMemP package is loaded after all
other packages to get maximum
effect. My testing showed that the
initial memory footprint was
reduced from 12Mb to 2.5Mb for
Delphi 3 and from 20.8Mb to 4.4Mb
for Delphi 4. Very nice!

In your applications, add the
TrimMem unit to the uses clause and
call TrimWorkingSet directly from
the project file (after any splash
windows or startup code) like this:

program TrimTest;
uses
TrimMem,
Forms,
Unit1 in 'Unit1.pas' {Form1};

{$R *.RES}
begin
Application.Initialize;

TrimMem.TrimWorkingSet;
Application.CreateForm(
TForm1, Form1);

Application.Run;
end.

We could simplify things by includ-
ing a call to TrimWorkingSet in the
initialization section of the
TrimMemunit, and include this as the
last unit in the project file. How-
ever, this would have been less
practical as the unit name would
have to be moved down each time
you add another form or unit to the
project. To get code to run when
the TrimMemP package is loaded we
include the RegTrim unit that
provides a dummy Register
function to call TrimWorkingSet.

Conclusion
For Delphi 2 the overhead of the
‘secretly’ added code is negligible,
but if you have more than a few
units with init.../final... code
you could benefit from using the
TrimMem unit.

For Delphi 3 and 4, the overhead
is substantial, especially for pro-
jects with many units. Adding
TrimMem to your application could
lose 10% to 15% of the initial
memory footprint.

Finally, for the Delphi IDEs, using
the TrimMemP package may mean
you can delay buying that extra
128Mb of RAM...

Currently this cure only works
on Windows NT platforms. It would
be nice if we could find a similar
solution for Windows 95 and 98,
but my research has shown that
there are no easy ways of paging
out processes in these OSs. The
only solution seems to be writing a
VxD driver to do the job and that is
outside the scope of this article...

Hallvard Vassbotn is a Senior
Software Developer at Reuters
Norge AS, Falcon R&D. You can
reach him at hallvard@falcon.no

➤ Above: Listing 3

procedure TrimWorkingSet;
var MainHandle : THandle;
begin
MainHandle := OpenProcess(PROCESS_ALL_ACCESS, false, GetCurrentProcessID);
SetProcessWorkingSetSize(MainHandle,-1,-1);
CloseHandle(MainHandle);
end;

	Examining The Patient
	Delphi 2 Diagnosis
	Delphi 3 And 4 Diagnosis
	Sweetening The Pill
	Proof Of The Pudding
	Conclusion

